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1. Notebook Structure
Well-structured notebooks are easier to maintain, debug, and collaborate on. Follow these standards for consistent, production-ready code.
1.1 Standard Notebook Layout
	Section
	Cell Type
	Purpose

	1
	Markdown - Header
	Title, description, author, last modified date

	2
	Code - Parameters
	Configurable parameters and constants

	3
	Code - Imports
	All library imports

	4
	Code - Functions
	Reusable function definitions

	5
	Markdown - Section
	Section headers for each logical block

	6
	Code - Logic
	Main transformation logic

	7
	Code - Write
	Output to destination

	8
	Code - Validation
	Row counts, assertions, logging



1.2 Header Template
# Notebook: Bronze to Silver - Claims Processing
# 
# Description: Transforms raw claims data from Bronze to
#              canonical Silver model with deduplication
#              and data quality validation.
# 
# Author: Data Engineering Team
# Created: 2024-01-15
# Last Modified: 2024-02-20
# 
# Dependencies:
#   - brz_claims_header (Bronze Lakehouse)
#   - brz_claims_detail (Bronze Lakehouse)
# 
# Outputs:
#   - slv_claims_master (Silver Lakehouse)
# 
# Parameters:
#   - process_date: Date to process (default: yesterday)
1.3 Parameters Cell
# ===== PARAMETERS =====
# Configure these for each environment/run

# Processing date (override in pipeline)
process_date = dbutils.widgets.get('process_date') if 'process_date' in dbutils.widgets.list() else None
if not process_date:
    from datetime import date, timedelta
    process_date = str(date.today() - timedelta(days=1))

# Source and target paths
BRONZE_LAKEHOUSE = 'bronze_lakehouse'
SILVER_LAKEHOUSE = 'silver_lakehouse'

# Quality thresholds
MAX_NULL_RATE = 0.05  # 5% max nulls in required fields
MIN_ROW_COUNT = 1000  # Minimum expected rows


2. Coding Standards
Follow Python and PySpark conventions for readable, maintainable code.
2.1 Naming Conventions
	Element
	Convention
	Example

	Variables
	snake_case
	claims_df, row_count

	Constants
	UPPER_SNAKE_CASE
	MAX_RETRIES, SOURCE_PATH

	Functions
	snake_case verb
	calculate_total(), load_data()

	DataFrames
	descriptive_df
	claims_raw_df, claims_clean_df

	Temp Tables
	tmp_purpose
	tmp_deduped, tmp_validated



2.2 Import Organization
# ===== IMPORTS =====
# Standard library
from datetime import datetime, timedelta
import json

# PySpark
from pyspark.sql import SparkSession
from pyspark.sql.functions import (
    col, lit, when, coalesce, concat,
    sum, count, avg, max, min,
    row_number, dense_rank,
    to_date, date_format, current_timestamp
)
from pyspark.sql.window import Window
from pyspark.sql.types import *

# Delta
from delta.tables import DeltaTable
2.3 Function Definitions
def transform_claims(df: DataFrame, process_date: str) -> DataFrame:
    '''
    Transform raw claims data to canonical model.
    
    Args:
        df: Raw claims DataFrame
        process_date: Date being processed (YYYY-MM-DD)
    
    Returns:
        DataFrame: Transformed claims with standard schema
    
    Raises:
        ValueError: If required columns are missing
    '''
    required_cols = ['claim_id', 'member_id', 'service_date']
    missing = [c for c in required_cols if c not in df.columns]
    if missing:
        raise ValueError(f'Missing required columns: {missing}')
    
    return (df
        .filter(col('service_date') <= process_date)
        .withColumn('processed_ts', current_timestamp())
    )



3. Error Handling
Implement robust error handling to ensure pipelines fail gracefully and provide actionable information.
3.1 Try-Except Pattern
try:
    # Main processing logic
    df = spark.read.table(f'{BRONZE_LAKEHOUSE}.brz_claims')
    transformed = transform_claims(df, process_date)
    transformed.write.format('delta').mode('overwrite').save(output_path)
    
    # Success logging
    print(f'SUCCESS: Processed {transformed.count()} records')
    
except Exception as e:
    # Error logging
    print(f'ERROR: Pipeline failed - {str(e)}')
    
    # Re-raise to fail the pipeline
    raise
3.2 Specific Exception Handling
from pyspark.sql.utils import AnalysisException

try:
    df = spark.read.table('nonexistent_table')
except AnalysisException as e:
    print(f'Table not found: {e}')
    # Handle gracefully - maybe create empty DataFrame
    df = spark.createDataFrame([], schema)
except Exception as e:
    print(f'Unexpected error: {e}')
    raise
3.3 Validation Assertions
def validate_output(df: DataFrame, min_rows: int = 1000):
    '''Validate output DataFrame meets quality requirements.'''
    
    row_count = df.count()
    
    # Row count check
    assert row_count >= min_rows, \
        f'Row count {row_count} below minimum {min_rows}'
    
    # Null check for required columns
    null_count = df.filter(col('claim_id').isNull()).count()
    null_rate = null_count / row_count
    assert null_rate < 0.01, \
        f'Null rate {null_rate:.2%} exceeds threshold'
    
    print(f'Validation passed: {row_count} rows')


4. Logging and Monitoring
Implement comprehensive logging for debugging, auditing, and operational monitoring.
4.1 Logging Pattern
import logging
from datetime import datetime

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Usage
logger.info(f'Starting pipeline for {process_date}')
logger.warning('No records found for date range')
logger.error(f'Failed to write output: {error}')
4.2 Pipeline Metrics
def log_pipeline_metrics(stage: str, df: DataFrame, start_time: datetime):
    '''Log standard pipeline metrics.'''
    row_count = df.count()
    duration = (datetime.now() - start_time).total_seconds()
    
    metrics = {
        'stage': stage,
        'row_count': row_count,
        'duration_seconds': duration,
        'timestamp': datetime.now().isoformat()
    }
    
    print(f'METRICS: {json.dumps(metrics)}')
    return metrics
4.3 Audit Table
# Write audit record
audit_record = spark.createDataFrame([{
    'pipeline_name': 'bronze_to_silver_claims',
    'run_id': run_id,
    'process_date': process_date,
    'source_count': source_count,
    'target_count': target_count,
    'status': 'SUCCESS',
    'start_time': start_time,
    'end_time': datetime.now(),
    'error_message': None
}])

audit_record.write.format('delta')
    .mode('append')
    .saveAsTable('audit.pipeline_runs')


5. Performance Patterns
Apply these patterns for efficient notebook execution.
5.1 Efficient Data Loading
# Good: Select only needed columns
df = spark.read.table('large_table').select('col1', 'col2', 'col3')

# Good: Filter early
df = spark.read.table('large_table')
    .filter(col('date') == process_date)

# Bad: Load all then filter
df = spark.read.table('large_table')  # Avoid!
5.2 Broadcast for Small Tables
from pyspark.sql.functions import broadcast

# Good: Broadcast small dimension table
result = fact_df.join(
    broadcast(dim_df),
    'key_column'
)
5.3 Caching Strategy
# Cache when DataFrame used multiple times
intermediate_df = (source_df
    .filter(complex_condition)
    .join(other_df, 'key')
)
intermediate_df.cache()
intermediate_df.count()  # Trigger cache

# Multiple uses
summary_a = intermediate_df.groupBy('a').count()
summary_b = intermediate_df.groupBy('b').count()

# Clean up
intermediate_df.unpersist()
5.4 Avoid Anti-Patterns
# Bad: Collect large data to driver
data = df.collect()  # Avoid for large DataFrames!

# Bad: Python UDF when built-in exists
@udf
def upper(s): return s.upper()  # Use built-in upper() instead

# Bad: Multiple writes in loop
for partition in partitions:
    df.filter(...).write.save(...)  # Combine into single write


6. Testing
Implement testing at multiple levels to ensure code quality and correctness.
6.1 Unit Testing Functions
# test_transformations.py
import pytest
from pyspark.sql import SparkSession

@pytest.fixture(scope='session')
def spark():
    return SparkSession.builder.getOrCreate()

def test_transform_claims(spark):
    # Arrange
    test_data = [
        (1, 'M001', '2024-01-15', 100.00),
        (2, 'M002', '2024-01-16', 200.00)
    ]
    df = spark.createDataFrame(test_data, 
        ['claim_id', 'member_id', 'service_date', 'amount'])
    
    # Act
    result = transform_claims(df, '2024-01-20')
    
    # Assert
    assert result.count() == 2
    assert 'processed_ts' in result.columns
6.2 Data Quality Tests
def test_data_quality(df: DataFrame):
    '''Run data quality tests on output DataFrame.'''
    results = []
    
    # Test 1: No duplicates on business key
    dup_count = df.groupBy('claim_id').count()
        .filter(col('count') > 1).count()
    results.append(('unique_keys', dup_count == 0))
    
    # Test 2: Valid date range
    invalid_dates = df.filter(
        (col('service_date') < '2020-01-01') |
        (col('service_date') > current_date())
    ).count()
    results.append(('valid_dates', invalid_dates == 0))
    
    # Report
    for test_name, passed in results:
        status = 'PASS' if passed else 'FAIL'
        print(f'{test_name}: {status}')
6.3 Integration Testing
def test_end_to_end():
    '''Test complete pipeline with sample data.'''
    # Setup test data
    test_df = create_test_data()
    test_df.write.format('delta').mode('overwrite')
        .save('Tables/test_bronze')
    
    # Run pipeline
    run_pipeline('Tables/test_bronze', 'Tables/test_silver')
    
    # Verify output
    result = spark.read.format('delta').load('Tables/test_silver')
    assert result.count() > 0
    
    # Cleanup
    spark.sql('DROP TABLE IF EXISTS test_bronze')
    spark.sql('DROP TABLE IF EXISTS test_silver')


7. Git Integration
Use version control for all notebook code to enable collaboration and change tracking.
7.1 Git Best Practices
1. Connect workspace to Git repository
1. Use feature branches for development
1. Commit frequently with meaningful messages
1. Review changes before merging to main
1. Never commit sensitive data or credentials
7.2 Branch Strategy
	Branch
	Purpose
	Deployment

	main
	Production-ready code
	Auto-deploy to Prod

	develop
	Integration branch
	Auto-deploy to Dev

	feature/*
	New development
	PR to develop

	hotfix/*
	Emergency fixes
	PR to main and develop



7.3 Commit Messages
# Good commit messages
feat: Add deduplication logic for claims processing
fix: Handle null values in member_id column
refactor: Extract validation into separate function
docs: Update notebook header with new parameters

# Bad commit messages
fixed bug
updates
WIP

8. Checklist
8.1 Before Development
1. Review requirements and acceptance criteria
1. Identify source and target tables
1. Design transformation logic
1. Plan error handling approach
1. Create feature branch
8.2 During Development
1. Follow notebook structure template
1. Use meaningful names for variables and functions
1. Add docstrings to functions
1. Include logging at key stages
1. Test with sample data
1. Validate output quality
8.3 Before Commit
1. Remove debug code and print statements
1. Clear notebook outputs
1. Run complete notebook end-to-end
1. Update header with changes
1. Review code for best practices
8.4 Before Production
1. Peer code review completed
1. All tests passing
1. Performance validated at scale
1. Error handling tested
1. Documentation updated
1. Deployed through proper pipeline
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